Powerlifters, strongmen, and bodybuilders – while they may follow vastly different training systems, the successful among them have one thing in common: they all have above-average levels of muscle mass.
Powerlifters and strongmen are mammoth-like, usually with high levels of muscle mass combined with similar levels of body fat, a result of their overall focus on performance over aesthetics.
Bodybuilders, on the other hand, typically have even greater levels of muscle mass than their strength-focused relatives but lower body fat levels, and a balanced, muscular physique indicative of the aesthetic focus of their training.
Each group has different approaches to decidedly different athletic pursuits, yet similar outcomes in muscle size and strength. Perhaps similarities in their training might provide us with valuable insight into the optimal way to train for mass and strength development.
How the Biggest and Strongest Do What They Do
Three recent surveys tried to shed some light on how bodybuilders (1), powerlifters (2), and strongman (3) develop superhuman strength and muscle mass.
The expected differences in their training were all there. Bodybuilders love to use five-day training splits, emphasizing body parts over movements, and focus more on the overall volume of their training than the load.
Powerlifters on the other hand, love box squats, bringing toys to the gym (bands and chains), sniffing ammonia, and seeing just how many plates they can cram on the bar.
Strongmen land somewhere in the middle, hoisting stones, kegs, and any odd object they can get their hands on, but also focus on the big three power lifts (bench, squat, deadlifts) while also incorporating Olympic lifts (clean and jerk, snatch) into their training.
The differences between their programs would make for a long list, but after sifting through the studies what's most apparent is that despite the differences in their respective sports, all the athletes rely on multiple training intensities (%RM) in their strength training sessions.
While it's common to see rigid intensity guidelines for what constitutes hypertrophy or strength training (4), it seems that none of these high-level athletes actually follow this advice.
Hypertrophy Irrespective of Load
Recent research suggests that hypertrophy can occur following training at opposite ends of the loading continuum, using what would be considered heavy (80-90%-1RM) and light (30%-1RM) training loads.
In their initial study, Burd, et al. (5) demonstrated that the muscle protein synthetic response to a single bout of strength training was similar with either heavy (90%-1RM) or light (30%-1RM) training loads lifted to failure.
In fact, the authors found a sustained synthetic response of specific protein fractions (sarcoplasmic, myofibrillar) with light loads, suggesting that a case could've been made for the potential superiority of lighter training loads lifted to failure for muscle hypertrophy.
Unfortunately, what happens following a single strength training session is not necessarily representative of the ultimate adaptations to training (hypertrophy), so the authors followed their original study with a 10-week training program comparing 30% of 1RM for three sets against 80% of 1RM for three sets, and 80% of 1RM for one set.
Mitchell, et al. (6) took 18 recreationally active men and had them perform a three-day per week unilateral strength training program for the knee extensors, with all sets taken to concentric failure.
Not surprisingly, based on their earlier study, training to failure with 30% of 1RM for three sets per exercise produced similar (but not greater) hypertrophy as training with 80% of 1RM for three sets, albeit with smaller changes in 1RM strength.
Some may use this study as an excuse to take some plates off the bar when training for size, and that may be a good idea in populations concerned with the forces involved in exercise (i.e., elderly, injured, musculoskeletal disorders), but what about those looking to improve their performance and muscle mass? Have we all been wasting our time straining under heavy weights?
Definitely not. These results highlight that both methods of training are useful and effective. In fact, it's not load or time-under tension that's most important, but the relationship between them that matters most.
This suggests that optimal hypertrophy training shouldn't rely on a single training intensity across all exercises, but rather address both heavy and lighter training loads based on the characteristics of the exercises used.
Got Some Time on Your Hands?
In the previous studies, higher training loads produced similar hypertrophy as the low load condition, but with a fraction of the time spent under the bar (roughly 15 seconds per set versus 45 seconds with 30% of 1RM).